11-1. Determine the moments at A, B, and C and then draw the moment diagram. EI is constant. Assume the support at B is a roller and A and C are fixed.

Fixed End Moments. Referring to the table on the inside back cover
$(\mathrm{FEM})_{A B}=-\frac{2 P L}{9}=-\frac{2(3)(9)}{9}=-6 \mathrm{k} \cdot \mathrm{ft}$
$(\mathrm{FEM})_{B A}=\frac{2 P L}{9}=\frac{2(3)(9)}{9}=6 \mathrm{k} \cdot \mathrm{ft}$
$(\mathrm{FEM})_{B C}=-\frac{P L}{8}=-\frac{4(20)}{8}=-10 \mathrm{k} \cdot \mathrm{ft}$
$(\mathrm{FEM})_{B C}=\frac{P L}{8}=\frac{4(20)}{8}=10 \mathrm{k} \cdot \mathrm{ft}$
Slope-Deflection Equations. Applying Eq. 11-8,

$$
M_{N}=2 E k\left(2 \theta_{N}+\theta_{F}-3 \psi\right)+(\mathrm{FEM})_{N}
$$

For span $A B$,
$M_{A B}=2 E\left(\frac{I}{9}\right)\left[2(0)+\theta_{B}-3(0)\right]+(-6)=\left(\frac{2 E I}{9}\right) \theta_{B}-6$
$M_{B A}=2 E\left(\frac{I}{9}\right)\left[2 \theta_{B}+0-3(0)\right]+6=\left(\frac{4 E I}{9}\right) \theta_{B}+6$
For span $B C$,
$M_{B C}=2 E\left(\frac{I}{20}\right)\left[2 \theta_{B}+0-3(0)\right]+(-10)=\left(\frac{E I}{5}\right) \theta_{B}-10$
$M_{C B}=2 E\left(\frac{I}{20}\right)\left[2(0)+\theta_{B}-3(0)\right]+(10)=\left(\frac{E I}{10}\right) \theta_{B}+10$
Equilibrium. At Support B,

$$
\begin{equation*}
M_{B A}+M_{B C}=0 \tag{5}
\end{equation*}
$$

Substitute Eq. 2 and 3 into (5),

$$
\left(\frac{4 E I}{9}\right) \theta_{B}+6+\left(\frac{E I}{5}\right) \theta_{B}-10=0 \quad \theta_{B}=\frac{180}{29 E I}
$$

Substitute this result into Eqs. 1 to 4,

$$
\begin{aligned}
M_{A B} & =-4.621 \mathrm{k} \cdot \mathrm{ft}=-4.62 \mathrm{k} \cdot \mathrm{ft} \\
M_{B A} & =8.759 \mathrm{k} \cdot \mathrm{ft}=8.76 \mathrm{k} \cdot \mathrm{ft} \\
M_{B C} & =-8.759 \mathrm{k} \cdot \mathrm{ft}=-8.76 \mathrm{k} \cdot \mathrm{ft} \\
M_{C B} & =10.62 \mathrm{k} \cdot \mathrm{ft}=10.6 \mathrm{k} \cdot \mathrm{ft}
\end{aligned}
$$

Ans.
Ans.
Ans.
Ans.
The Negative Signs indicate that $\mathbf{M}_{A B}$ and $\mathbf{M}_{B C}$ have the counterclockwise rotational sense. Using these results, the shear at both ends of span $A B$ and $B C$ are computed and shown in Fig. a and b, respectively. Subsequently, the shear and moment diagram can be plotted, Fig. c and d respectively.

11-1. Continued

(a)

(b)

(c)

(d)

11-2. Determine the moments at A, B, and C, then draw the moment diagram for the beam. The moment of inertia of each span is indicated in the figure. Assume the support at B is a roller and A and C are fixed. $E=29\left(10^{3}\right) \mathrm{ksi}$.

Fixed End Moments. Referring to the table on the inside back cover,
$(\mathrm{FEM})_{A B}=-\frac{w L^{2}}{12}=-\frac{2\left(24^{2}\right)}{12}=-96 \mathrm{k} \cdot \mathrm{ft}$
$(\mathrm{FEM})_{B A}=\frac{w L^{2}}{12}=\frac{2\left(24^{2}\right)}{12}=96 \mathrm{k} \cdot \mathrm{ft}$
$(\mathrm{FEM})_{B C}=-\frac{P L}{8}=-\frac{30(16)}{8}=-60 \mathrm{k} \cdot \mathrm{ft}$
$(\mathrm{FEM})_{C B}=\frac{P L}{8}=\frac{30(16)}{8}=60 \mathrm{k} \cdot \mathrm{ft}$

11-2. Continued

Slope-Deflection Equations. Applying Eq. 11-8,

$$
M_{N}=2 E k\left(2 \theta_{N}+\theta_{F}-3 \psi\right)+(\mathrm{FEM})_{N}
$$

For span $A B$,

$$
\begin{align*}
M_{A B}= & 2 E\left[\frac{900 \mathrm{in}^{4}}{24(12) \mathrm{in}}\right]\left[2(0)+\theta_{B}-3(0)\right]+[-96(12) \mathrm{k} \cdot \mathrm{in}] \\
& M_{A B}=6.25 E \theta_{B}-1152 \tag{1}\\
M_{B A}= & 2 E\left[\frac{900 \mathrm{in}^{4}}{24(12) \mathrm{in}}\right]\left[2 \theta_{B}+0-3(0)\right]+96(12) \mathrm{k} \cdot \mathrm{in} \\
& M_{B A}=12.5 E \theta_{B}+1152 \tag{2}
\end{align*}
$$

For span $B C$,

$$
\begin{align*}
M_{B C}= & 2 E\left[\frac{1200 \mathrm{in}^{4}}{16(12) \mathrm{in}}\right]\left[2 \theta_{B}+0-3(0)\right]+[-60(12) \mathrm{k} \cdot \mathrm{in}] \\
& M_{B C}=25 E \theta_{B}-720 \tag{3}
\end{align*}
$$

$$
\begin{aligned}
M_{C B}= & 2 E\left[\frac{1200 \mathrm{in}^{4}}{16(12) \mathrm{in}}\right]\left[2(0)+\theta_{B}-3(0)\right]+60(12) \mathrm{k} \cdot \mathrm{in} \\
& M_{C B}=12.5 E \theta_{B}+720
\end{aligned}
$$

Equilibrium. At Support B,

$$
\begin{equation*}
M_{B A}+M_{B C}=0 \tag{5}
\end{equation*}
$$

Substitute Eqs. 3(2) and (3) into (5),
$12.5 E \theta_{B}+1152+25 E \theta_{B}-720=0$

$$
\theta_{B}=-\frac{11.52}{E}
$$

Substitute this result into Eqs. (1) to (4),

$$
\begin{aligned}
& M_{A B}=-1224 \mathrm{k} \cdot \mathrm{in}=-102 \mathrm{k} \cdot \mathrm{ft} \\
& M_{B A}=1008 \mathrm{k} \cdot \mathrm{in}=84 \mathrm{k} \cdot \mathrm{ft} \\
& M_{B C}=-1008 \mathrm{k} \cdot \mathrm{in}=-84 \mathrm{k} \cdot \mathrm{ft} \\
& M_{C B}=576 \mathrm{k} \cdot \text { in }=48 \mathrm{k} \cdot \mathrm{ft}
\end{aligned}
$$

Ans.
Ans.
Ans.
Ans.
The negative signs indicate that $\mathbf{M}_{A B}$ and $\mathbf{M}_{B C}$ have counterclockwise rotational senses. Using these results, the shear at both ends of spans $A B$ and $B C$ are computed and shown in Fig. a and b, respectively. Subsequently, the shear and moment diagram can be plotted, Fig. c and d respectively.

11-2. Continued

(c)

(d)

11-3. Determine the moments at the supports A and C, then draw the moment diagram. Assume joint B is a roller. $E I$ is constant.
$M_{N}=2 E\left(\frac{I}{L}\right)\left(2 \theta_{N}+\theta_{F}-3 \psi\right)+(\mathrm{FEM})_{N}$
$M_{A B}=\frac{2 E I}{6}\left(0+\theta_{B}\right)-\frac{(25)(6)}{8}$
$M_{B A}=\frac{2 E I}{6}\left(2 \theta_{B}\right)+\frac{(25)(6)}{8}$
$M_{B C}=\frac{2 E I}{4}\left(2 \theta_{B}\right)-\frac{(15)(4)^{2}}{12}$
$M_{C B}=\frac{2 E I}{4}\left(\theta_{B}\right)+\frac{(15)(4)^{2}}{12}$

Equilibrium.

$M_{B A}+M_{B C}=0$
$\frac{2 E I}{6}\left(2 \theta_{B}\right)+\frac{25(6)}{8}+\frac{2 E I}{4}\left(2 \theta_{B}\right)-\frac{15(4)^{2}}{12}=0$
$\theta_{B}=\frac{0.75}{E I}$

$$
\begin{aligned}
M_{A B} & =-18.5 \mathrm{kN} \cdot \mathrm{~m} \\
M_{C B} & =20.375 \mathrm{kN} \cdot \mathrm{~m}=20.4 \mathrm{kN} \cdot \mathrm{~m} \\
M_{B A} & =19.25 \mathrm{kN} \cdot \mathrm{~m} \\
M_{B C} & =-19.25 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Ans.
Ans.
Ans.
Ans.
*11-4. Determine the moments at the supports, then draw the moment diagram. Assume B is a roller and A and C are fixed. $E I$ is constant.
$(\mathrm{FEM})_{A B}=-\frac{11(25)(6)^{2}}{192}=-51.5625 \mathrm{kN} \cdot \mathrm{m}$
$(\mathrm{FEM})_{B A}=\frac{5(25)(6)^{2}}{192}=23.4375 \mathrm{kN} \cdot \mathrm{m}$
$(\mathrm{FEM})_{B C}=\frac{-5(15)(8)}{16}=-37.5 \mathrm{kN} \cdot \mathrm{m}$
$(\mathrm{FEM})_{C B}=37.5 \mathrm{kN} \cdot \mathrm{m}$
$M_{N}=2 E\left(\frac{I}{L}\right)\left(2 \theta_{N}+\theta_{F}-3 \psi\right)+(\mathrm{FEM})_{N}$
$M_{A B}=2 E\left(\frac{I}{6}\right)\left(2(0)+\theta_{B}-0\right)-51.5625$
$M_{A B}=\frac{E I \theta_{B}}{3}-51.5625$
$M_{B A}=2 E\left(\frac{I}{6}\right)\left(2 \theta_{B}+0-0\right)+23.4375$
$M_{B A}=\frac{2 E I \theta_{B}}{3}+23.4375$
$M_{B C}=2 E\left(\frac{I}{8}\right)\left(2 \theta_{B}+0-0\right)-37.5$
$M_{B C}=\frac{E I \theta_{B}}{2}-37.5$
$M_{C B}=2 E\left(\frac{I}{8}\right)\left(2(0)+\theta_{B}-0\right)+37.5$
$M_{C B}=\frac{E I \theta_{B}}{4}+37.5$

Equilibrium.

$M_{B A}+M_{B C}=0$
Solving:

$$
\begin{aligned}
& \theta_{B}=\frac{12.054}{E I} \\
& M_{A B}=-47.5 \mathrm{kN} \cdot \mathrm{~m} \\
& M_{B A}=31.5 \mathrm{kN} \cdot \mathrm{~m} \\
& M_{B C}=-31.5 \mathrm{kN} \cdot \mathrm{~m} \\
& M_{C B}=40.5 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

11-5. Determine the moment at A, B, C and D, then draw the moment diagram for the beam. Assume the supports at A and D are fixed and B and C are rollers. $E I$ is constant.

Fixed End Moments. Referring to the table on the inside back cover,
$(\mathrm{FEM})_{A B}=0 \quad(\mathrm{FEM})_{B A}=0 \quad(\mathrm{FEM})_{C D}=0 \quad(\mathrm{FEM})_{D C}=0$
$(\mathrm{FEM})_{B C}=-\frac{w L^{2}}{12}=-\frac{20\left(3^{2}\right)}{12}=-15 \mathrm{kN} \cdot \mathrm{m}$
$(\mathrm{FEM})_{C B}=\frac{w L^{2}}{12}=\frac{20\left(3^{2}\right)}{12}=15 \mathrm{kN} \cdot \mathrm{m}$
Slope-Deflection Equation. Applying Eq. 11-8,
$M_{N}=2 E k\left(2 \theta_{N}+\theta_{F}-3 \psi\right)+(\mathrm{FEM})_{N}$
For span $A B$,
$M_{A B}=2 E\left(\frac{I}{5}\right)\left[2(0)+\theta_{B}-3(0)\right]+0=\left(\frac{2 E I}{5}\right) \theta_{B}$
$M_{B A}=2 E\left(\frac{I}{5}\right)\left[2 \theta_{B}+0-3(0)\right]+0=\left(\frac{4 E I}{5}\right) \theta_{B}$
For span $B C$,
$M_{B C}=2 E\left(\frac{I}{3}\right)\left[2 \theta_{B}+\theta_{C}-3(0)\right]+(-15)=\left(\frac{4 E I}{3}\right) \theta_{B}+\left(\frac{2 E I}{3}\right) \theta_{C}-15$
$M_{C B}=2 E\left(\frac{I}{3}\right)\left[2 \theta_{C}+\theta_{B}-3(0)\right]+15=\left(\frac{4 E I}{3}\right) \theta_{C}+\left(\frac{2 E I}{3}\right) \theta_{B}+15$

(b)

For span $C D$,
$M_{C D}=2 E\left(\frac{I}{5}\right)\left[2 \theta_{C}+0-3(0)\right]+0=\left(\frac{4 E I}{5}\right) \theta_{C}$
$M_{D C}=2 E\left(\frac{I}{5}\right)\left[2(0)+\theta_{C}-3(0)\right]+0=\left(\frac{2 E I}{5}\right) \theta_{C}$
Equilibrium. At Support B,

$$
\begin{gather*}
M_{B A}+M_{B C}=0 \\
\left(\frac{4 E I}{5}\right) \theta_{B}+\left(\frac{4 E I}{3}\right) \theta_{B}+\left(\frac{2 E I}{3}\right) \theta_{C}-15=0 \\
\left(\frac{32 E I}{15}\right) \theta_{B}+\left(\frac{2 E I}{3}\right) \theta_{C}=15 \tag{7}
\end{gather*}
$$

At Support C,

$$
\begin{gathered}
M_{C B}+M_{C D}=0 \\
\left(\frac{4 E I}{3}\right) \theta_{C}+\left(\frac{2 E I}{3}\right) \theta_{B}+15+\left(\frac{4 E I}{5}\right) \theta_{C}=0
\end{gathered}
$$

11-5. Continued

$$
\begin{equation*}
\left(\frac{2 E I}{3}\right) \theta_{B}+\left(\frac{32 E I}{15}\right) \theta_{C}=-15 \tag{8}
\end{equation*}
$$

Solving Eqs. (7) and (8)

$$
\theta_{B}=\frac{225}{22 E I} \quad \theta_{C}=-\frac{225}{22 E I}
$$

Substitute these results into Eqs. (1) to (6),

$$
\begin{aligned}
M_{A B} & =4.091 \mathrm{kN} \cdot \mathrm{~m}=4.09 \mathrm{kN} \cdot \mathrm{~m} \\
M_{B A} & =8.182 \mathrm{kN} \cdot \mathrm{~m}=8.18 \mathrm{kN} \cdot \mathrm{~m} \\
M_{B C} & =-8.182 \mathrm{kN} \cdot \mathrm{~m}=-8.18 \mathrm{kN} \cdot \mathrm{~m} \\
M_{C B} & =8.182 \mathrm{kN} \cdot \mathrm{~m}=8.18 \mathrm{kN} \cdot \mathrm{~m} \\
M_{C D} & =-8.182 \mathrm{kN} \cdot \mathrm{~m}=-8.18 \mathrm{kN} \cdot \mathrm{~m} \\
M_{D C} & =-4.091 \mathrm{kN} \cdot \mathrm{~m}=-4.09 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Ans.
Ans.
Ans.
Ans.
Ans.
Ans.

The negative sign indicates that $\mathbf{M}_{B C}, \mathbf{M}_{C D}$ and $\mathbf{M}_{D C}$ have counterclockwise rotational sense. Using these results, the shear at both ends of spans $A B, B C$, and $C D$ are computed and shown in Fig. a, b, and c respectively. Subsequently, the shear and moment diagram can be plotted, Fig. d, and e respectively.

(d)

(e)

11-6. Determine the moments at A, B, C and D, then draw the moment diagram for the beam. Assume the supports at A and D are fixed and B and C are rollers. $E I$ is constant.

Fixed End Moments. Referring to the table on the inside back cover,
$(\mathrm{FEM})_{A B}=-\frac{w L^{2}}{12}=-\frac{2(15)^{2}}{12}=-37.5 \mathrm{k} \cdot \mathrm{ft}$
$(\mathrm{FEM})_{B A}=\frac{w L^{2}}{12}=\frac{2\left(15^{2}\right)}{12}=37.5 \mathrm{k} \cdot \mathrm{ft}$
$(\mathrm{FEM})_{B C}=(\mathrm{FEM})_{C B}=0$
$(\mathrm{FEM})_{C D}=\frac{-2 P L}{9}=-\frac{2(9)(15)}{9}=-30 \mathrm{k} \cdot \mathrm{ft}$
$(\mathrm{FEM})_{D C}=\frac{2 P L}{9}=\frac{2(9)(15)}{9}=30 \mathrm{k} \cdot \mathrm{ft}$
Slope-Deflection Equation. Applying Eq. 11-8,

$$
M_{N}=2 E k\left(2 \theta_{N}+\theta_{F}-3 \psi\right)+(\mathrm{FEM})_{N}
$$

For span $A B$,
$M_{A B}=2 E\left(\frac{I}{15}\right)\left[2(0)+\theta_{B}-3(0)\right]+(-37.5)=\left(\frac{2 E I}{15}\right) \theta_{B}-37.5$
$M_{B A}=2 E\left(\frac{I}{15}\right)\left[2 \theta_{B}+0-3(0)\right]+37.5=\left(\frac{4 E I}{15}\right) \theta_{B}+37.5$
For span $B C$,
$M_{B C}=2 E\left(\frac{I}{15}\right)\left[2 \theta_{B}+\theta_{C}-3(0)\right]+0=\left(\frac{4 E I}{15}\right) \theta_{B}+\left(\frac{2 E I}{15}\right) \theta_{C}$
$M_{C B}=2 E\left(\frac{I}{15}\right)\left[2 \theta_{C}+\theta_{B}-3(0)\right]+0=\left(\frac{4 E I}{15}\right) \theta_{C}+\left(\frac{2 E I}{15}\right) \theta_{B}$

(b)

11-6. Continued

For span $C D$,
$M_{C D}=2 E\left(\frac{I}{15}\right)\left[2 \theta_{C}+0-3(0)\right]+(-30)=\left(\frac{4 E I}{15}\right) \theta_{C}-30$
$M_{D C}=2 E\left(\frac{I}{15}\right)\left[2(0)+\theta_{C}-3(0)\right]+30=\left(\frac{2 E I}{15}\right) \theta_{C}+30$
Equilibrium. At Support B,

$$
\begin{gather*}
M_{B A}+M_{B C}=0 \\
\left(\frac{4 E I}{15}\right) \theta_{B}+37.5+\left(\frac{4 E I}{15}\right) \theta_{B}+\left(\frac{2 E I}{15}\right) \theta_{C}=0 \\
\left(\frac{8 E I}{15}\right) \theta_{B}+\left(\frac{2 E I}{15}\right) \theta_{C}=-37.5 \tag{7}
\end{gather*}
$$

At Support C,

$$
\begin{gather*}
M_{C B}+M_{C D}=0 \\
\left(\frac{4 E I}{15}\right) \theta_{C}+\left(\frac{2 E I}{15}\right) \theta_{B}+\left(\frac{4 E I}{15}\right) \theta_{C}-30=0 \\
\left(\frac{8 E I}{15}\right) \theta_{C}+\left(\frac{2 E I}{15}\right) \theta_{B}=30 \tag{8}
\end{gather*}
$$

Solving Eqs. (7) and (8),

$$
\theta_{C}=\frac{78.75}{E I} \quad \theta_{B}=-\frac{90}{E I}
$$

Substitute these results into Eqs. (1) to (6),

$$
\begin{aligned}
M_{A B} & =-49.5 \mathrm{k} \cdot \mathrm{ft} \\
M_{B A} & =13.5 \mathrm{k} \cdot \mathrm{ft} \\
M_{B C} & =-13.5 \mathrm{k} \cdot \mathrm{ft} \\
M_{C B} & =9 \mathrm{k} \cdot \mathrm{ft} \\
M_{C D} & =-9 \mathrm{k} \cdot \mathrm{ft} \\
M_{D C} & =40.5 \mathrm{k} \cdot \mathrm{ft}
\end{aligned}
$$

Ans.
Ans.
Ans.
Ans.
Ans.
Ans.

The negative signs indicate that $\mathbf{M}_{A B}, \mathbf{M}_{B C}$ and $\mathbf{M}_{C D}$ have counterclockwise rotational sense. Using these results, the shear at both ends of spans $A B, B C$, and $C D$ are computed and shown in Fig. a, b, and c respectively. Subsequently, the shear and moment diagram can be plotted, Fig. d, and e respectively.

(d)

11-7. Determine the moment at B, then draw the moment diagram for the beam. Assume the supports at A and C are pins and B is a roller. $E I$ is constant.

Fixed End Moments. Referring to the table on the inside back cover,
$(\mathrm{FEM})_{B A}=\left(\frac{P}{L^{2}}\right)\left(b^{2} a+\frac{a^{2} b}{2}\right)=\left(\frac{40}{8^{2}}\right)\left[6^{2}(2)+\frac{2^{2}(6)}{2}\right]=52.5 \mathrm{kN} \cdot \mathrm{m}$
$(\mathrm{FEM})_{B C}=-\frac{3 P L}{16}=-\frac{3(20)(8)}{16}=-30 \mathrm{kN} \cdot \mathrm{m}$
Slope-Deflection Equations. Applying Eq. 11-10 Since one of the end's support for spans $A B$ and $B C$ is a pin.

$$
M_{N}=3 E k\left(\theta_{N}-\psi\right)+(\mathrm{FEM})_{N}
$$

For span $A B$,
$M_{B A}=3 E\left(\frac{I}{8}\right)\left(\theta_{B}-0\right)+52.5=\left(\frac{3 E I}{8}\right) \theta_{B}+52.5$
For span $B C$,
$M_{B C}=3 E\left(\frac{I}{8}\right)\left(\theta_{B}-0\right)+(-30)=\left(\frac{3 E I}{8}\right) \theta_{B}-30$
Equilibrium. At support B,

$$
\begin{gathered}
M_{B A}+M_{B C}=0 \\
\left(\frac{3 E I}{8}\right) \theta_{B}+52.5+\left(\frac{3 E I}{8}\right) \theta_{B}-30=0 \\
\left(\frac{3 E I}{4}\right) \theta_{B}=-22.5 \\
\theta_{B}=-\frac{30}{E I}
\end{gathered}
$$

(b)
$v(k N)$

(C)

11-7. Continued

Substitute this result into Eqs. (1) and (2)

$$
\begin{aligned}
M_{B A} & =41.25 \mathrm{kN} \cdot \mathrm{~m} \\
M_{B C} & =-41.25 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Ans.
Ans.

The negative sign indicates that $\mathbf{M}_{B C}$ has counterclockwise rotational sense. Using this result, the shear at both ends of spans $A B$ and $B C$ are computed and shown in Fig. a and b respectively. Subsequently, the shear and Moment diagram can be plotted, Fig. c and d respectively.
*11-8. Determine the moments at A, B, and C, then draw the moment diagram. $E I$ is constant. Assume the support at B is a roller and A and C are fixed.

$(\mathrm{FEM})_{A B}=-\frac{P L}{8}=-12, \quad(\mathrm{FEM})_{B C}=-\frac{w L^{2}}{12}=-13.5$
$(\mathrm{FEM})_{B A}=\frac{P L}{8}=12, \quad(\mathrm{FEM})_{C B}=\frac{w L^{2}}{12}=13.5$
$\theta_{A}=\theta_{C}=\psi_{A B}=\psi_{B C}=0$

$M_{N}=2 E\left(\frac{I}{L}\right)\left(2 \theta_{N}+\theta_{F}-3 \psi\right)+(\mathrm{FEM})_{N}$
$M_{A B}=\frac{2 E I}{16}\left(\theta_{B}\right)-12$
$M_{B A}=\frac{2 E I}{16}\left(2 \theta_{B}\right)+12$
$M_{B C}=\frac{2 E I}{18}\left(2 \theta_{B}\right)-13.5$
$M_{C B}=\frac{2 E I}{18}\left(\theta_{B}\right)+13.5$
Moment equilibrium at B :
$M_{B A}+M_{B C}=0$
$\frac{2 E I}{16}\left(2 \theta_{B}\right)+12+\frac{2 E I}{18}\left(2 \theta_{B}\right)-13.5=0$
$\theta_{B}=\frac{3.1765}{E I}$

11-8. Continued

Thus
$M_{A B}=-11.60=-11.6 \mathrm{k} \cdot \mathrm{ft}$
$M_{B A}=12.79=12.8 \mathrm{k} \cdot \mathrm{ft}$
$M_{B C}=-12.79=-12.8 \mathrm{k} \cdot \mathrm{ft}$
$M_{C B}=13.853=13.9 \mathrm{k} \cdot \mathrm{ft}$

Ans.
Ans.
Ans.
Ans.

Left Segment
C $+\sum M_{A}=0 ; \quad-11.60+6(8)+12.79-V_{B L}(16)=0$
$V_{B L}=3.0744 \mathrm{k}$
$+\uparrow \sum F_{y}=0 ; \quad A_{y}=2.9256 \mathrm{k}$
Right Segment
C $+\sum M_{B}=0 ; \quad-12.79+9(9)-C_{y}(18)+13.85=0$

$$
C_{y}=4.5588 \mathrm{k}
$$

$+\uparrow \sum F_{y}=0 ; \quad V_{B K}=4.412 \mathrm{k}$
At B
$B_{y}=3.0744+4.4412=7.52 \mathrm{k}$

11-9. Determine the moments at each support, then draw the moment diagram. Assume A is fixed. $E I$ is constant.
$M_{N}=2 E\left(\frac{I}{L}\right)\left(2 \theta_{N}+\theta_{F}-3 \psi\right)+(\mathrm{FEM})_{N}$
$M_{A B}=\frac{2 E I}{20}\left(2(0)+\theta_{B}-0\right)-\frac{4(20)^{2}}{12}$
$M_{B A}=\frac{2 E I}{20}\left(2 \theta_{B}+0-0\right)+\frac{4(20)^{2}}{12}$
$M_{B C}=\frac{2 E I}{15}\left(2 \theta_{B}+\theta_{C}-0\right)+0$
$M_{C B}=\frac{2 E I}{15}\left(2 \theta_{C}+\theta_{B}-0\right)+0$
$M_{N}=3 E\left(\frac{I}{L}\right)\left(\theta_{N}-\psi\right)+(\mathrm{FEM})_{N}$
$M_{C D}=\frac{3 E I}{16}\left(\theta_{C}-0\right)-\frac{3(12) 16}{16}$

11-9. Continued

Equilibrium

$M_{B A}+M_{B C}=0$
$M_{C B}+M_{C D}=0$
Solving
$\theta_{C}=\frac{178.08}{E I}$
$\theta_{B}=-\frac{336.60}{E I}$

$$
M_{A B}=-167 \mathrm{k} \cdot \mathrm{ft}
$$

$$
M_{B A}=66.0 \mathrm{k} \cdot \mathrm{ft}
$$

$M_{B C}=-66.0 \mathrm{k} \cdot \mathrm{ft}$
$M_{C B}=2.61 \mathrm{k} \cdot \mathrm{ft}$
$M_{C D}=-2.61 \mathrm{k} \cdot \mathrm{ft}$

Ans.
Ans.
Ans.
Ans.

11-10. Determine the moments at A and B, then draw the moment diagram for the beam. $E I$ is constant.

$(\mathrm{FEM})_{A B}=-\frac{1}{12}(w)\left(L^{2}\right)=-\frac{1}{12}(200)\left(30^{2}\right)=-15 \mathrm{k} \cdot \mathrm{ft}$
$M_{A B}=\frac{2 E I}{30}\left(0+\theta_{B}-0\right)-15$
$M_{B A}=\frac{2 E I}{30}\left(2 \theta_{B}+0-0\right)+15$
$\sum M_{B}=0 ; \quad M_{B A}=2.4(10)$
Solving,
$\theta_{B}=\frac{67.5}{E I}$
$M_{A B}=-10.5 \mathrm{k} \cdot \mathrm{ft}$
$M_{B A}=24 \mathrm{k} \cdot \mathrm{ft}$

Ans.
Ans.

11-11. Determine the moments at A, B, and C, then draw the moment diagram for the beam. Assume the support at A is fixed, B and C are rollers, and D is a pin. $E I$ is constant.

Fixed End Moments. Referring to the table on the inside back cover,
$(\mathrm{FEM})_{A B}=-\frac{2 P L}{9}=-\frac{2(6)(12)}{9}=-16 \mathrm{k} \cdot \mathrm{ft}$
$(\mathrm{FEM})_{B A}=\frac{2 P L}{9}=\frac{2(6)(12)}{9}=16 \mathrm{k} \cdot \mathrm{ft}$
$(\mathrm{FEM})_{B C}=(\mathrm{FEM})_{C B}=0 \quad(\mathrm{FEM})_{C D}=-\frac{w L^{2}}{8}=-\frac{3\left(12^{2}\right)}{8}=-54 \mathrm{k} \cdot \mathrm{ft}$
Slope-Deflection Equations. Applying Eq. 11-8, for spans $A B$ and $B C$.
$M_{N}=2 E k\left(2 \theta_{N}+\theta_{F}-3 \psi\right)+(\mathrm{FEM})_{N}$
For span $A B$,
$M_{A B}=2 E\left(\frac{I}{12}\right)\left[2(0)+\theta_{B}-3(0)\right]+(-16)=\left(\frac{E I}{6}\right) \theta_{B}-16$
$M_{B A}=2 E\left(\frac{I}{12}\right)\left[2 \theta_{B}+0-3(0)\right]+16=\left(\frac{E I}{3}\right) \theta_{B}+16$
For span $B C$,
$M_{B C}=2 E\left(\frac{I}{12}\right)\left[2 \theta_{B}+\theta_{C}-3(0)\right]+0=\left(\frac{E I}{3}\right) \theta_{B}+\left(\frac{E I}{6}\right) \theta_{C}$
$M_{C B}=2 E\left(\frac{I}{12}\right)\left[2 \theta_{C}+\theta_{B}-3(0)\right]+0=\left(\frac{E I}{3}\right) \theta_{C}+\left(\frac{E I}{6}\right) \theta_{B}$
Applying Eq. 11-10 for span $C D$,

$$
\begin{gather*}
M_{N}=3 E k\left(\theta_{N}-\psi\right)+(\mathrm{FEM})_{N} \\
M_{C D}=3 E\left(\frac{I}{12}\right)\left(\theta_{C}-0\right)+(-54)=\left(\frac{E I}{4}\right) \theta_{C}-54 \tag{5}
\end{gather*}
$$

Equilibrium. At support B,

$$
\begin{gather*}
M_{B A}+M_{B C}=0 \\
\left(\frac{E I}{3}\right) \theta_{B}+16+\left(\frac{E I}{3}\right) \theta_{B}+\left(\frac{E I}{6}\right) \theta_{C}=0 \\
\left(\frac{2 E I}{3}\right) \theta_{B}+\left(\frac{E I}{6}\right) \theta_{C}=-16 \tag{6}
\end{gather*}
$$

(c)

11-11. Continued

Solving Eqs. (6) and (7)
$\theta_{C}=\frac{1392}{13 E I} \quad \theta_{B}=-\frac{660}{13 E I}$
Substitute these results into Eq. (1) to (5)
$M_{A B}=-24.46 \mathrm{k} \cdot \mathrm{ft}=-24.5 \mathrm{k} \cdot \mathrm{ft}$
Ans.
$M_{B A}=-0.9231 \mathrm{k} \cdot \mathrm{ft}=-0.923 \mathrm{k} \cdot \mathrm{ft}$
Ans.
$M_{B C}=0.9231 \mathrm{k} \cdot \mathrm{ft}=0.923 \mathrm{k} \cdot \mathrm{ft}$
Ans.
$M_{C B}=27.23 \mathrm{k} \cdot \mathrm{ft}=27.2 \mathrm{k} \cdot \mathrm{ft}$
$M_{C D}=-27.23 \mathrm{k} \cdot \mathrm{ft}=-27.2 \mathrm{k} \cdot \mathrm{ft}$
Ans.
Ans.
The negative signs indicates that $\mathbf{M}_{A B}, \mathbf{M}_{B A}$, and $\mathbf{M}_{C D}$ have counterclockwise rotational sense. Using these results, the shear at both ends of spans $A B, B C$, and $C D$ are computed and shown in Fig. a, b, and c respectively. Subsequently, the shear and moment diagram can be plotted, Fig. d and e respectively.

(d)

(e)
*11-12. Determine the moments acting at A and B. Assume A is fixed supported, B is a roller, and C is a pin. $E I$ is constant.

$(\mathrm{FEM})_{A B}=\frac{w L^{2}}{30}=-54, \quad(\mathrm{FEM})_{B C}=\frac{3 P L}{16}=-90$
$(\mathrm{FEM})_{B A}=\frac{w L^{2}}{20}=81$

Applying Eqs. 11-8 and 11-10,
$M_{A B}=\frac{2 E I}{9}\left(\theta_{B}\right)-54$
$M_{B A}=\frac{2 E I}{9}\left(2 \theta_{B}\right)+81$
$M_{B C}=\frac{3 E I}{6}\left(\theta_{B}\right)-90$
Moment equilibrium at B :
$M_{B A}+M_{B C}=0$
$\frac{4 E I}{9}\left(\theta_{B}\right)+81+\frac{E I}{2} \theta_{B}-90=0$
$\theta_{B}=\frac{9.529}{E I}$
Thus,
$M_{A B}=-51.9 \mathrm{kN} \cdot \mathrm{m}$
$M_{B A}=85.2 \mathrm{kN} \cdot \mathrm{m}$
$M_{B C}=-85.2 \mathrm{kN} \cdot \mathrm{m}$
Ans.
Ans.
Ans.

$(\mathrm{FEM})_{A B}=\frac{-4(18)^{2}}{12}=-108 \mathrm{k} \cdot \mathrm{ft}$
$(\mathrm{FEM})_{B A}=108 \mathrm{k} \cdot \mathrm{ft}$
$(\mathrm{FEM})_{B C}=(\mathrm{FEM})_{C B}=0$

11-13. Continued

$M_{N}=2 E\left(\frac{I}{L}\right)\left(2 \theta_{N}+\theta_{F}-3 \psi\right)+(\mathrm{FEM})_{N}$
$M_{A B}=2 E\left(\frac{I}{18}\right)\left(2(0)+\theta_{B}-0\right)-108$
$M_{A B}=0.1111 E I \theta_{B}-108$
$M_{B A}=2 E\left(\frac{I}{18}\right)\left(2 \theta_{B}+0-0\right)+108$
$M_{B A}=0.2222 E I \theta_{B}+108$
$M_{B C}=2 E\left(\frac{I}{9}\right)\left(2 \theta_{B}+0-0\right)+0$
$M_{B C}=0.4444 E I \theta_{B}$
$M_{C B}=2 E\left(\frac{I}{9}\right)\left(2(0)+\theta_{B}-0\right)+0$
$M_{C B}=0.2222 E I \theta_{B}$

Equilibrium

$$
\begin{equation*}
M_{B A}+M_{B C}=0 \tag{5}
\end{equation*}
$$

Solving Eqs. 1-5:
$\theta_{B}=\frac{-162.0}{E I}$
$M_{A B}=-126 \mathrm{k} \cdot \mathrm{ft}$
$M_{B A}=72 \mathrm{k} \cdot \mathrm{ft}$
$M_{B C}=-72 \mathrm{k} \cdot \mathrm{ft}$
$M_{C B}=-36 \mathrm{k} \cdot \mathrm{ft}$

Ans.
Ans.
Ans.
Ans.

11-14. Determine the moments at the supports, then draw the moment diagram. The members are fixed connected at the supports and at joint B. The moment of inertia of each member is given in the figure. Take $E=29\left(10^{3}\right) \mathrm{ksi}$.
$(\mathrm{FEM})_{A B}=\frac{-20(16)}{8}=-40 \mathrm{k} \cdot \mathrm{ft}$
$(\mathrm{FEM})_{B A}=40 \mathrm{k} \cdot \mathrm{ft}$
$(\mathrm{FEM})_{B C}=\frac{-15(12)}{8}=-22.5 \mathrm{k} \cdot \mathrm{ft}$
$(\mathrm{FEM})_{C B}=22.5 \mathrm{k} \cdot \mathrm{ft}$
$M_{N}=2 E\left(\frac{I}{L}\right)\left(2 \theta_{N}+\theta_{F}-3 \psi\right)+(\mathrm{FEM})_{N}$
$M_{A B}=\frac{2(29)\left(10^{3}\right)(800)}{16(144)}\left(2(0)+\theta_{B}-0\right)-40$
$M_{A B}=20,138.89 \theta_{B}-40$
$M_{B A}=\frac{2(29)\left(10^{3}\right)(800)}{16(144)}\left(2 \theta_{B}+0-0\right)+40$
$M_{B A}=40,277.78 \theta_{B}+40$
$M_{B C}=\frac{2(29)\left(10^{3}\right)(1200)}{12(144)}\left(2 \theta_{B}+0-0\right)-22.5$
$M_{B C}=80,555.55 \theta_{B}-22.5$
$M_{C B}=\frac{2(29)\left(10^{3}\right)(1200)}{12(144)}\left(2(0)+\theta_{B}-0\right)+22.5$
$M_{C B}=40,277.77 \theta_{B}+22.5$

Equilibrium.

$M_{B A}+M_{B C}=0$
Solving Eqs. 1-5:
$\theta_{B}=-0.00014483$

$$
\begin{aligned}
M_{A B} & =-42.9 \mathrm{k} \cdot \mathrm{ft} \\
M_{B A} & =34.2 \mathrm{k} \cdot \mathrm{ft} \\
M_{B C} & =-34.2 \mathrm{k} \cdot \mathrm{ft} \\
M_{C B} & =16.7 \mathrm{k} \cdot \mathrm{ft}
\end{aligned}
$$

(1)

Ans.

11-15. Determine the moment at B, then draw the moment diagram for each member of the frame. Assume the support at A is fixed and C is pinned. $E I$ is constant.

Fixed End Moments. Referring to the table on the inside back cover,
$(\mathrm{FEM})_{A B}=-\frac{w L^{2}}{12}=-\frac{2\left(3^{2}\right)}{12}=-1.50 \mathrm{kN} \cdot \mathrm{m}$
$(\mathrm{FEM})_{B A}=\frac{w L^{2}}{12}=\frac{2\left(3^{2}\right)}{12}=1.50 \mathrm{kN} \cdot \mathrm{m}$
$(\mathrm{FEM})_{B C}=0$
Slope-Deflection Equations. Applying Eq. 11-8 for member $A B$,

$$
\begin{equation*}
M_{N}=2 E k\left(2 \theta_{N}+\theta_{F}-3 \psi\right)+(\mathrm{FEM})_{N} \tag{1}
\end{equation*}
$$

$M_{A B}=2 E\left(\frac{I}{3}\right)\left[2(0)+\theta_{B}-3(0)\right]+(-1.50)=\left(\frac{2 E I}{3}\right) \theta_{B}-1.50$
$M_{B A}=2 E\left(\frac{I}{3}\right)\left[2 \theta_{B}+0-3(0)\right]+1.50=\left(\frac{4 E I}{3}\right) \theta_{B}+1.50$
Applying Eq. 11-10 for member $B C$,

$$
\begin{array}{r}
M_{N}=3 E k\left(\theta_{N}-\psi\right)+(\mathrm{FEM})_{N} \\
M_{B C}=3 E\left(\frac{I}{4}\right)\left(\theta_{B}-0\right)+0=\left(\frac{3 E I}{4}\right) \theta_{B} \tag{3}
\end{array}
$$

Equilibrium. At Joint B,

$$
\begin{gathered}
M_{B A}+M_{B C}=0 \\
\left(\frac{4 E I}{3}\right) \theta_{B}+1.50+\left(\frac{3 E I}{4}\right) \theta_{B}=0 \\
\theta_{B}=-\frac{0.72}{E I}
\end{gathered}
$$

Substitute this result into Eqs. (1) to (3)
$M_{A B}=-1.98 \mathrm{kN} \cdot \mathrm{m}$
$M_{B A}=0.540 \mathrm{kN} \cdot \mathrm{m}$
$M_{B C}=-0.540 \mathrm{kN} \cdot \mathrm{m}$
Ans.
Ans.
Ans.
The negative signs indicate that $\mathbf{M}_{A B}$ and $\mathbf{M}_{B C}$ have counterclockwise rotational sense. Using these results, the shear at both ends of member $A B$ and $B C$ are computed and shown in Fig. a and b respectively. Subsequently, the shear and moment diagram can be plotted, Fig. c and d respectively.

(b)

(d)
*11-16. Determine the moments at B and D, then draw the moment diagram. Assume A and C are pinned and B and D are fixed connected. $E I$ is constant.
$(\mathrm{FEM})_{B A}=0$
$(\mathrm{FEM})_{B C}=\frac{-3(8)(20)}{16}=-30 \mathrm{k} \cdot \mathrm{ft}$
$(\mathrm{FEM})_{B D}=(\mathrm{FEM})_{D B}=0$
$M_{N}=3 E\left(\frac{I}{L}\right)\left(\theta_{N}-\psi\right)+(\mathrm{FEM})_{N}$
$M_{B A}=3 E\left(\frac{I}{15}\right)\left(\theta_{B}-0\right)+0$
$M_{B A}=0.2 E I \theta_{B}$
$M_{B C}=3 E\left(\frac{I}{20}\right)\left(\theta_{B}-0\right)-30$
$M_{B C}=0.15 E I \theta_{B}-30$
$M_{N}=2 E\left(\frac{I}{L}\right)\left(2 \theta_{N}+\theta_{F}-3 \psi\right)+(\mathrm{FEM})_{N}$
$M_{B D}=2 E\left(\frac{I}{12}\right)\left(2 \theta_{B}+0-0\right)+0$
$M_{B D}=0.3333 E I \theta_{B}$
$M_{D B}=2 E\left(\frac{I}{12}\right)\left(2(0)+\theta_{B}-0\right)+0$
$M_{D B}=0.1667 E I \theta_{B}$

Equilibrium.

$M_{B A}+M_{B C}+M_{B D}=0$
Solving Eqs. 1-5:
$\theta_{B}=\frac{43.90}{E I}$

$$
\begin{aligned}
M_{B A} & =8.78 \mathrm{k} \cdot \mathrm{ft} \\
M_{B C} & =-23.41 \mathrm{k} \cdot \mathrm{ft} \\
M_{B D} & =14.63 \mathrm{k} \cdot \mathrm{ft} \\
M_{D B} & =7.32 \mathrm{k} \cdot \mathrm{ft}
\end{aligned}
$$

(1)

2)

11-17. Determine the moment that each member exerts on the joint at B, then draw the moment diagram for each member of the frame. Assume the support at A is fixed and C is a pin. $E I$ is constant.

Fixed End Moments. Referring to the table on the inside back cover,

$(\mathrm{FEM})_{A B}=-\frac{P L}{8}=-\frac{10(12)}{8}=-15 \mathrm{k} \cdot \mathrm{ft} \quad(\mathrm{FEM})_{B A}=\frac{P L}{8}=\frac{10(12)}{8}=15 \mathrm{k} \cdot \mathrm{ft}$
$(\mathrm{FEM})_{B C}=-\frac{w L^{2}}{8}=-\frac{2\left(15^{2}\right)}{8}=-56.25 \mathrm{k} \cdot \mathrm{ft}$
Slope Reflection Equations. Applying Eq. 11-8 for member $A B$,

$$
\begin{gather*}
M_{N}=2 E k\left(2 \theta_{N}+\theta_{F}-3 \psi\right)+(\mathrm{FEM})_{N} \\
M_{A B}=2 E\left(\frac{I}{12}\right)\left[2(0)+\theta_{B}-3(0)\right]+(-15)=\left(\frac{E I}{6}\right) \theta_{B}-15 \tag{1}\\
M_{B A}=2 E\left(\frac{I}{12}\right)\left[2 \theta_{B}+0-3(0)\right]+15=\left(\frac{E I}{3}\right) \theta_{B}+15 \tag{2}
\end{gather*}
$$

For member $B C$, applying Eq. 11-10

$$
\begin{gather*}
M_{N}=3 E k\left(\theta_{N}-\psi\right)+(\mathrm{FEM})_{N} \\
M_{B C}=3 E\left(\frac{I}{15}\right)\left(\theta_{B}-0\right)+(-56.25)=\left(\frac{E I}{5}\right) \theta_{B}-56.25 \tag{3}
\end{gather*}
$$

Equilibrium. At joint B,

$$
\begin{gathered}
M_{B A}+M_{B C}=0 \\
\left(\frac{E I}{3}\right) \theta_{B}+15+\left(\frac{E I}{5}\right) \theta_{B}-56.25=0 \\
\theta_{B}=\frac{77.34375}{E I}
\end{gathered}
$$

Substitute this result into Eqs. (1) to (3)

$$
\begin{aligned}
M_{A B} & =-2.109 \mathrm{k} \cdot \mathrm{ft}=-2.11 \mathrm{k} \cdot \mathrm{ft} \\
M_{B A} & =40.78 \mathrm{k} \cdot \mathrm{ft}=40.8 \mathrm{k} \cdot \mathrm{ft} \\
M_{B C} & =-40.78 \mathrm{k} \cdot \mathrm{ft}=-40.8 \mathrm{k} \cdot \mathrm{ft}
\end{aligned}
$$

Ans.

Ans.
Ans.
The negative signs indicate that $\mathbf{M}_{A B}$ and $\mathbf{M}_{B C}$ have counterclockwise rotational sense. Using these results, the shear at both ends of member $A B$ and $B C$ are computed and shown in Fig. a and b respectively. Subsequently, the shear and Moment diagram can be plotted, Fig. c and d respectively. exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

11-17. Continued

(b)

(d)

11-18. Determine the moment that each member exerts on the joint at B, then draw the moment diagram for each member of the frame. Assume the supports at A, C, and D are pins. $E I$ is constant.

Fixed End Moments. Referring to the table on the inside back cover,
$(\mathrm{FEM})_{B A}=\frac{w L^{2}}{8}=\frac{12\left(8^{2}\right)}{8}=96 \mathrm{kN} \cdot \mathrm{m} \quad(\mathrm{FEM})_{B C}=(\mathrm{FEM})_{B D}=0$

Slope-Reflection Equation. Since the far end of each members are pinned, Eq. 11-10 can be applied

$$
M_{N}=3 E k\left(\theta_{N}-\psi\right)+(\mathrm{FEM})_{N}
$$

For member $A B$,

$$
\begin{equation*}
M_{B A}=3 E\left(\frac{I}{8}\right)\left(\theta_{B}-0\right)+96=\left(\frac{3 E I}{8}\right) \theta_{B}+96 \tag{1}
\end{equation*}
$$

For member $B C$,

$$
\begin{equation*}
M_{B C}=3 E\left(\frac{I}{6}\right)\left(\theta_{B}-0\right)+0=\left(\frac{E I}{2}\right) \theta_{B} \tag{2}
\end{equation*}
$$

For member $B D$,

$$
\begin{equation*}
M_{B D}=3 E\left(\frac{I}{6}\right)\left(\theta_{B}-0\right)+0=\frac{E I}{2} \theta_{B} \tag{3}
\end{equation*}
$$

Equilibrium. At joint B,

$$
\begin{gathered}
M_{B A}+M_{B C}+M_{B D}=0 \\
\left(\frac{3 E I}{8}\right) \theta_{B}+96+\left(\frac{E I}{2}\right) \theta_{B}+\frac{E I}{2} \theta_{B}=0 \\
\theta_{B}=-\frac{768}{11 E I}
\end{gathered}
$$

Substitute this result into Eqs. (1) to (3)

$$
\begin{aligned}
& M_{B A}=69.82 \mathrm{kN} \cdot \mathrm{~m}=69.8 \mathrm{kN} \cdot \mathrm{~m} \\
& M_{B C}=-34.91 \mathrm{kN} \cdot \mathrm{~m}=-34.9 \mathrm{kN} \cdot \mathrm{~m} \\
& M_{B D}=-34.91 \mathrm{kN} \cdot \mathrm{~m}=-34.9 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Ans.
Ans.
Ans.
The negative signs indicate that $\mathbf{M}_{B C}$ and $\mathbf{M}_{B D}$ have counterclockwise rotational sense. Using these results, the shear at both ends of members $A B, B C$, and $B D$ are computed and shown in Fig. a, b and c respectively. Subsequently, the shear and moment diagrams can be plotted, Fig. d and e respectively.

11-18. Continued

(d)

(e)

11-19. Determine the moment at joints D and C, then draw the moment diagram for each member of the frame. Assume the supports at A and B are pins. $E I$ is constant.

Fixed End Moments. Referring to the table on the inside back cover,

$(\mathrm{FEM})_{D C}=-\frac{w L^{2}}{12}=-\frac{3\left(10^{2}\right)}{12}=-25 \mathrm{k} \cdot \mathrm{ft} \quad(\mathrm{FEM})_{C D}=\frac{w L^{2}}{12}=\frac{3\left(10^{2}\right)}{12}=25 \mathrm{k} \cdot \mathrm{ft}$
$(\mathrm{FEM})_{D A}=(\mathrm{FEM})_{C B}=0$
Slope-Deflection Equations. For member CD, applying Eq. 11-8

$$
\begin{align*}
& M_{N}=2 E k\left(2 \theta_{N}+\theta_{F}-3 \psi\right)+(\mathrm{FEM})_{N} \\
& \quad M_{D C}=2 E\left(\frac{I}{10}\right)\left[2 \theta_{D}+\theta_{C}-3(0)\right]+(-25)=\left(\frac{2 E I}{5}\right) \theta_{D}+\left(\frac{E I}{5}\right) \theta_{C}-25 \tag{1}\\
& \quad M_{C D}=2 E\left(\frac{I}{10}\right)\left[2 \theta_{C}+\theta_{D}-3(0)\right]+25=\left(\frac{2 E I}{5}\right) \theta_{C}+\left(\frac{E I}{5}\right) \theta_{D}+25 \tag{2}
\end{align*}
$$

For members $A D$ and $B C$, applying Eq. 11-10

$$
\begin{gather*}
M_{N}=3 E k\left(\theta_{N}-\psi\right)+(\mathrm{FEM})_{N} \\
M_{D A}=3 E\left(\frac{I}{13}\right)\left(\theta_{D}-0\right)+0=\left(\frac{3 E I}{13}\right) \theta_{D} \tag{3}\\
M_{C B}=3 E\left(\frac{I}{13}\right)\left(\theta_{C}-0\right)+0=\left(\frac{3 E I}{13}\right) \theta_{C} \tag{4}
\end{gather*}
$$

Equilibrium. At joint D,

$$
\begin{gather*}
M_{D C}+M_{D A}=0 \\
\left(\frac{2 E I}{5}\right) \theta_{D}+\left(\frac{E I}{5}\right) \theta_{C}-25+\left(\frac{3 E I}{13}\right) \theta_{D}=0 \\
\left(\frac{41 E I}{65}\right) \theta_{D}+\left(\frac{E I}{5}\right) \theta_{C}=25 \tag{5}
\end{gather*}
$$

At joint C,

$$
\begin{gather*}
M_{C D}+M_{C B}=0 \\
\left(\frac{2 E I}{5}\right) \theta_{C}+\left(\frac{E I}{5}\right) \theta_{D}+25+\left(\frac{3 E I}{13}\right) \theta_{C}=0 \\
\left(\frac{41 E I}{65}\right) \theta_{C}+\left(\frac{E I}{5}\right) \theta_{D}=-25 \tag{6}
\end{gather*}
$$

Solving Eqs. (5) and (6)

$$
\theta_{D}=\frac{1625}{28 E I} \quad \theta_{C}=-\frac{1625}{28 E I}
$$

Substitute these results into Eq. (1) to (4)

$$
\begin{aligned}
& M_{D C}=-13.39 \mathrm{k} \cdot \mathrm{ft}=-13.4 \mathrm{k} \cdot \mathrm{ft} \\
& M_{C D}=13.39 \mathrm{k} \cdot \mathrm{ft}=13.4 \mathrm{k} \cdot \mathrm{ft} \\
& M_{D A}=13.39 \mathrm{k} \cdot \mathrm{ft}=13.4 \mathrm{k} \cdot \mathrm{ft} \\
& M_{C B}=-13.39 \mathrm{k} \cdot \mathrm{ft}=-13.4 \mathrm{k} \cdot \mathrm{ft}
\end{aligned}
$$

Ans.

Ans.
Ans.
Ans.

11-19. Continued

The negative signs indicate that $\mathbf{M}_{D C}$ and $\mathbf{M}_{C B}$ have counterclockwise rotational sense. Using these results, the shear at both ends of members $A D, C D$, and $B C$ are computed and shown in Fig. a, b, and c respectively. Subsequently, the shear and moment diagrams can be plotted, Fig. d and e respectively.

(e)
*11-20. Determine the moment that each member exerts on the joints at B and D, then draw the moment diagram for each member of the frame. Assume the supports at A, C, and E are pins. $E I$ is constant.

Fixed End Moments. Referring to the table on the inside back cover,
$(\mathrm{FEM})_{B A}=(\mathrm{FEM})_{B D}=(\mathrm{FEM})_{D B}=0$
$(\mathrm{FEM})_{B C}=-\frac{w L^{2}}{8}=-\frac{16\left(3^{2}\right)}{8}=-18 \mathrm{kN} \cdot \mathrm{m}$
$(\mathrm{FEM})_{D E}=-\frac{w L^{2}}{8}=-\frac{12\left(3^{2}\right)}{8}=-13.5 \mathrm{kN} \cdot \mathrm{m}$
Slope-Deflection Equations. For member $A B, B C$, and $E D$, applying Eq. 11-10.

$$
\begin{gather*}
M_{N}=3 E k\left(\theta_{N}-\psi\right)+(\mathrm{FEM})_{N} \\
M_{B A}=3 E\left(\frac{I}{4}\right)\left(\theta_{B}-0\right)+0=\left(\frac{3 E I}{4}\right) \theta_{B} \tag{1}\\
M_{B C}=3 E\left(\frac{I}{3}\right)\left(\theta_{B}-0\right)+(-18)=E I \theta_{B}-18 \tag{2}\\
M_{D E}=3 E\left(\frac{I}{3}\right)\left(\theta_{D}-0\right)+(-13.5)=E I \theta_{D}-13.5 \tag{3}
\end{gather*}
$$

For member $B D$, applying Eq. 11-8

$$
\begin{gather*}
M_{N}=2 E k\left(2 \theta_{N}+\theta_{F}-3 \psi\right)+(\mathrm{FEM})_{N} \\
M_{B D}=2 E\left(\frac{I}{4}\right)\left[2 \theta_{B}+\theta_{D}-3(0)\right]+0=E I \theta_{B}+\left(\frac{E I}{2}\right) \theta_{D} \tag{4}\\
M_{D B}=2 E\left(\frac{I}{4}\right)\left[2 \theta_{D}+\theta_{B}-3(0)\right]+0=E I \theta_{D}+\left(\frac{E I}{2}\right) \theta_{B} \tag{5}
\end{gather*}
$$

Equilibrium. At Joint B,

$$
\begin{gather*}
M_{B A}+M_{B C}+M_{B D}=0 \\
\left(\frac{3 E I}{4}\right) \theta_{B}+E I \theta_{B}-18+E I \theta_{B}+\left(\frac{E I}{2}\right) \theta_{D}=0 \\
\left(\frac{11 E I}{4}\right) \theta_{B}+\left(\frac{E I}{2}\right) \theta_{D}=18 \tag{6}
\end{gather*}
$$

At joint D,

$$
\begin{gather*}
M_{D B}+M_{D E}=0 \\
E I \theta_{D}+\left(\frac{E I}{2}\right) \theta_{B}+E I \theta_{D}-13.5=0 \\
2 E I \theta_{D}+\left(\frac{E I}{2}\right) \theta_{B}=13.5 \tag{7}
\end{gather*}
$$

Solving Eqs. (6) and (7)

$$
\theta_{B}=\frac{39}{7 E I} \quad \theta_{D}=\frac{75}{14 E I}
$$

11-20. Continued

Substitute these results into Eqs. (1) to (5),

$$
\begin{aligned}
M_{B A} & =4.179 \mathrm{kN} \cdot \mathrm{~m}=4.18 \mathrm{kN} \cdot \mathrm{~m} \\
M_{B C} & =-12.43 \mathrm{kN} \cdot \mathrm{~m}=-12.4 \mathrm{kN} \cdot \mathrm{~m} \\
M_{D E} & =-8.143 \mathrm{kN} \cdot \mathrm{~m}=-8.14 \mathrm{kN} \cdot \mathrm{~m} \\
M_{B D} & =8.25 \mathrm{kN} \cdot \mathrm{~m} \\
M_{D B} & =8.143 \mathrm{kN} \cdot \mathrm{~m}=8.14 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Ans.
Ans.
Ans.
Ans.
Ans.

The negative signs indicate that $\mathbf{M}_{B C}$ and $\mathbf{M}_{D E}$ have counterclockwise rotational sense. Using these results, the shear at both ends of members $A B, B C, B D$ and $D E$ are computed and shown on Fig. a, b, c and d respectively. Subsequently, the shear and moment diagram can be plotted, Fig. e and f.

(a)

11-21. Determine the moment at joints C and D, then draw the moment diagram for each member of the frame. Assume the supports at A and B are pins. $E I$ is constant.

Fixed End Moments. Referring to the table on the inside back cover,
$(\mathrm{FEM})_{D A}=\frac{w L^{2}}{8}=\frac{8\left(6^{2}\right)}{8}=36 \mathrm{kN} \cdot \mathrm{m}$
$(\mathrm{FEM})_{D C}=(\mathrm{FEM})_{C D}=(\mathrm{FEM})_{C B}=0$
Slope-Deflection Equations. Here, $\psi_{D A}=\psi_{C B}=\psi$ and $\psi_{D C}=\psi_{C D}=0$

For member $C D$, applying Eq. 11-8,

$$
\begin{gather*}
M_{N}=2 E k\left(2 \theta_{N}+\theta_{F}-3 \psi\right)+(\mathrm{FEM})_{N} \\
M_{D C}=2 E\left(\frac{I}{5}\right)\left[2 \theta_{D}+\theta_{C}-3(0)\right]+0=\left(\frac{4 E I}{5}\right) \theta_{D}+\left(\frac{2 E I}{5}\right) \theta_{C} \tag{1}\\
M_{C D}=2 E\left(\frac{I}{5}\right)\left[2 \theta_{C}+\theta_{D}-3(0)\right]+0=\left(\frac{4 E I}{5}\right) \theta_{C}+\left(\frac{2 E I}{5}\right) \theta_{D} \tag{2}
\end{gather*}
$$

For member $A D$ and $B C$, applying Eq. 11-10

$$
\begin{gather*}
M_{N}=3 E k\left(\theta_{N}-\psi\right)+(\mathrm{FEM})_{N} \\
M_{D A}=3 E\left(\frac{I}{6}\right)\left(\theta_{D}-\psi\right)+36=\left(\frac{E I}{2}\right) \theta_{D}-\left(\frac{E I}{2}\right) \psi+36 \tag{3}\\
M_{C B}=3 E\left(\frac{I}{6}\right)\left(\theta_{C}-\psi\right)+0=\left(\frac{E I}{2}\right) \theta_{C}-\left(\frac{E I}{2}\right) \psi \tag{4}
\end{gather*}
$$

Equilibrium. At joint D,

$$
\begin{gather*}
M_{D A}+M_{D C}=0 \\
\left(\frac{E I}{2}\right) \theta_{D}-\left(\frac{E I}{2}\right) \psi+36+\left(\frac{4 E I}{5}\right) \theta_{D}+\left(\frac{2 E I}{5}\right) \theta_{C}=0 \\
1.3 E I \theta_{D}+0.4 E I \theta_{C}-0.5 E I \psi=-36 \tag{5}
\end{gather*}
$$

At joint C,

$$
\begin{gather*}
M_{C D}+M_{C B}=0 \\
\left(\frac{4 E I}{5}\right) \theta_{C}+\left(\frac{2 E I}{5}\right) \theta_{D}+\left(\frac{E I}{2}\right) \theta_{C}-\left(\frac{E I}{2}\right) \psi=0 \\
0.4 E I \theta_{D}+1.3 E I \theta_{C}-0.5 E I \psi=0 \tag{6}
\end{gather*}
$$

and

$$
\begin{gathered}
C+\sum M_{C}=0 ; \quad-M_{C B}-V_{B}(6)=0 \\
V_{B}=-\frac{M_{C B}}{6}=0
\end{gathered}
$$

Consider the horizontal force equilibrium for the entire frame
$\xrightarrow{+} \sum F_{x}=0 ; 8(6)-V_{A}-V_{B}=0$
Referring to the FBD of member $A D$ and $B C$ in Fig. a,
$\zeta+\sum M_{D}=0 ; 8(6)(3)-M_{D A}-V_{A}(6)=0$

$$
V_{A}=24-\frac{M_{D A}}{6}
$$

(b)

11-21. Continued

Thus,
$8(6)-\left(24-\frac{M_{D A}}{6}\right)-\left(-\frac{M_{C B}}{6}\right)=0$
$M_{D A}+M_{C B}=-144$
$\left(\frac{E I}{2}\right) \theta_{D}-\left(\frac{E I}{2}\right) \psi+36+\left(\frac{E I}{2}\right) \theta_{C}-\left(\frac{E I}{2}\right) \psi=-144$
$0.5 E I \theta_{D}+0.5 E I \theta_{C}-E I \psi=-180$

Solving of Eqs. (5), (6) and (7)
$\theta_{C}=\frac{80}{E I} \quad \theta_{D}=\frac{40}{E I} \quad \psi=\frac{240}{E I}$
Substitute these results into Eqs. (1) to (4),

$$
\begin{aligned}
M_{D C} & =64.0 \mathrm{kN} \cdot \mathrm{~m} \\
M_{C D} & =80.0 \mathrm{kN} \cdot \mathrm{~m} \\
M_{D A} & =-64.0 \mathrm{kN} \cdot \mathrm{~m} \\
M_{C B} & =-80.0 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Ans.
Ans.
Ans.
Ans.
The negative signs indicate that $\mathbf{M}_{D A}$ and $\mathbf{M}_{C B}$ have counterclockwise rotational sense. Using these results, the shear at both ends of members $A D, C D$, and $B C$ are computed and shown in Fig. b, c, and d, respectively. Subsequently, the shear and moment diagram can be plotted, Fig. e and f respectively.

(d)

(e)

(f)

11-22. Determine the moment at joints A, B, C, and D, then draw the moment diagram for each member of the frame. Assume the supports at A and B are fixed. $E I$ is constant.

Fixed End Moments. Referring to the table on the inside back cover,

$(\mathrm{FEM})_{A D}=-\frac{w L^{2}}{20}=-\frac{30\left(3^{2}\right)}{20}=13.5 \mathrm{kN} \cdot \mathrm{m}$
$(\mathrm{FEM})_{D A}=\frac{w L^{2}}{30}=\frac{30\left(3^{2}\right)}{30}=9 \mathrm{kN} \cdot \mathrm{m}$
$(\mathrm{FEM})_{D C}=(\mathrm{FEM})_{C D}=(\mathrm{FEM})_{C B}=(\mathrm{FEM})_{B C}=0$
Slope-Deflection Equations. Here, $\psi_{A D}=\psi_{D A}=\psi_{B C}=\psi_{C B}=\psi$ and $\psi_{C D}=\psi_{D C}=0$

Applying Eq. 11-8,

$$
M_{N}=2 E k\left(2 \theta_{N}+\theta_{F}-3 \psi\right)+(\mathrm{FEM})_{N}
$$

For member $A D$,

$$
\begin{gather*}
M_{A D}=2 E\left(\frac{I}{3}\right)\left[2(0)+\theta_{D}-3 \psi\right]+(-13.5)=\left(\frac{2 E I}{3}\right) \theta_{D}-2 E I \psi-13.5 \tag{1}\\
M_{D A}=2 E\left(\frac{I}{3}\right)\left(2 \theta_{D}+0-3 \psi\right)+9=\left(\frac{4 E I}{3}\right) \theta_{D}-2 E I \psi+9 \tag{2}
\end{gather*}
$$

For member $C D$,

$$
\begin{gather*}
M_{D C}=2 E\left(\frac{I}{3}\right)\left[2 \theta_{D}+\theta_{C}-3(0)\right]+0=\left(\frac{4 E I}{3}\right) \theta_{D}+\left(\frac{2 E I}{3}\right) \theta_{C} \tag{3}\\
M_{C D}=2 E\left(\frac{I}{3}\right)\left[2 \theta_{C}+\theta_{D}-3(0)\right]+0=\left(\frac{4 E I}{3}\right) \theta_{C}+\left(\frac{2 E I}{3}\right) \theta_{D} \tag{4}
\end{gather*}
$$

For member $B C$,

$$
\begin{gather*}
M_{B C}=2 E\left(\frac{I}{3}\right)\left[2(0)+\theta_{C}-3 \psi\right]+0=\left(\frac{2 E I}{3}\right) \theta_{C}-2 E I \psi \tag{5}\\
M_{C B}=2 E\left(\frac{I}{3}\right)\left[2 \theta_{C}+0-3 \psi\right]+0=\left(\frac{4 E I}{3}\right) \theta_{C}-2 E I \psi \tag{6}
\end{gather*}
$$

Equilibrium. At Joint D,

$$
\begin{gather*}
M_{D A}+M_{D C}=0 \\
\left(\frac{4 E I}{3}\right) \theta_{D}-2 E I \psi+9+\left(\frac{4 E I}{3}\right) \theta_{D}+\left(\frac{2 E I}{3}\right) \theta_{C}=0 \\
\left(\frac{8 E I}{3}\right) \theta_{D}+\left(\frac{2 E I}{3}\right) \theta_{C}-2 E I \psi=-9 \tag{7}
\end{gather*}
$$

At joint C,

$$
\begin{gathered}
M_{C D}+M_{C B}=0 \\
\left(\frac{4 E I}{3}\right) \theta_{C}+\left(\frac{2 E I}{3}\right) \theta_{D}+\left(\frac{4 E I}{3}\right) \theta_{C}-2 E I \psi=0
\end{gathered}
$$

11-22. Continued

$$
\begin{equation*}
\left(\frac{2 E I}{3}\right) \theta_{D}+\left(\frac{8 E I}{3}\right) \theta_{C}-2 E I \psi=0 \tag{8}
\end{equation*}
$$

Consider the horizontal force equilibrium for the entire frame,

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad \frac{1}{2}(30)(3)-V_{A}-V_{B}=0
$$

Referring to the FBD of members $A D$ and $B C$ in Fig. a

$$
\begin{gathered}
\zeta+\sum M_{D}=0 ; \quad \frac{1}{2}(30)(3)(2)-M_{D A}-M_{A D}-V_{A}(3)=0 \\
V_{A}=30-\frac{M_{D A}}{3}-\frac{M_{A D}}{3}
\end{gathered}
$$

and

$$
\begin{array}{r}
\varsigma+\sum M_{C}=0 ;-M_{C B}-M_{B C}-V_{B}(3)=0 \\
V_{B}=-\frac{M_{C B}}{3}-\frac{M_{B C}}{3}
\end{array}
$$

Thus,

$$
\begin{gather*}
\frac{1}{2}(30)(3)-\left(30-\frac{M_{D A}}{3}-\frac{M_{A D}}{3}\right)-\left(-\frac{M_{C B}}{3}-\frac{M_{B C}}{3}\right)=0 \\
M_{D A}+M_{A D}+M_{C B}+M_{B C}=-45 \\
\left(\frac{4 E I}{3}\right) \theta_{D}-2 E I \psi+9+\left(\frac{2 E I}{3}\right) \theta_{D}-2 E I \psi-13.5+\left(\frac{4 E I}{3}\right) \theta_{C}-2 E I \psi \\
+\left(\frac{2 E I}{3}\right) \theta_{C}-2 E I \psi=-45 \\
2 E I \theta_{D}+2 E I \theta_{C}-8 E I \psi=-40.5 \tag{9}
\end{gather*}
$$

Solving of Eqs. (7), (8) and (9)

$$
\theta_{C}=\frac{261}{56 E I} \quad \theta_{D}=\frac{9}{56 E I} \quad \psi=\frac{351}{56 E I}
$$

Substitute these results into Eq. (1) to (6),

$$
\begin{aligned}
M_{A D} & =-25.93 \mathrm{kN} \cdot \mathrm{~m}=-25.9 \mathrm{kN} \cdot \mathrm{~m} \\
M_{D A} & =-3.321 \mathrm{kN} \cdot \mathrm{~m}=-3.32 \mathrm{kN} \cdot \mathrm{~m} \\
M_{D C} & =3.321 \mathrm{kN} \cdot \mathrm{~m}=3.32 \mathrm{kN} \cdot \mathrm{~m} \\
M_{C D} & =6.321 \mathrm{kN} \cdot \mathrm{~m}=6.32 \mathrm{kN} \cdot \mathrm{~m} \\
M_{B C} & =-9.429 \mathrm{kN} \cdot \mathrm{~m}=-9.43 \mathrm{kN} \cdot \mathrm{~m} \\
M_{C B} & =-6.321 \mathrm{kN} \cdot \mathrm{~m}=-6.32 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Ans.
Ans.
Ans.
Ans.
Ans.
Ans.
The negative signs indicate that $\mathbf{M}_{A D}, \mathbf{M}_{D A}, \mathbf{M}_{B C}$ and $\mathbf{M}_{C B}$ have counterclockwise rotational sense.Using these results, the shear at both ends of members $A D, C D$ and $B C$ are computed and shown on Fig. b, c and d, respectively. Subsequently, the shear and moment diagram can be plotted, Fig. e and d respectively. exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

11-23. Determine the moments acting at the supports A and D of the battered-column frame. Take $E=29\left(10^{3}\right) \mathrm{ksi}$, $I=600 \mathrm{in}^{4}$.

$(\mathrm{FEM})_{B C}=-\frac{w L^{2}}{12}=-1600 \mathrm{k} \cdot \mathrm{in} . \quad(\mathrm{FEM})_{C B}=\frac{w L^{2}}{12}=1600 \mathrm{k} \cdot \mathrm{in}$.

$$
\theta_{A}=\theta_{D}=0
$$

$$
\psi_{A B}=\psi_{C D}=\frac{\Delta}{25}
$$

$$
\psi_{B C}=-\frac{1.2 \Delta}{20}
$$

$$
\psi_{B C}=-1.5 \psi_{C D}=-1.5 \psi_{A B}
$$

$$
\psi=-1.5 \psi \quad\left(\text { where } \psi=\psi_{B C}, \psi=\psi_{A B}=\psi_{C D}\right)
$$

$M_{N}=2 E\left(\frac{I}{L}\right)\left(2 \theta_{N}+\theta_{F}-3 \psi\right)+(\mathrm{FEM})_{N}$
$M_{A B}=2 E\left(\frac{600}{25(12)}\right)\left(0+\theta_{B}-3 \psi\right)+0=116,000 \theta_{B}-348,000 \psi$
$M_{B A}=2 E\left(\frac{600}{25(12)}\right)\left(2 \theta_{B}+0-3 \psi\right)+0=232,000 \theta_{B}-348,000 \psi$
$M_{B C}=2 E\left(\frac{600}{20(12)}\right)\left(2 \theta_{B}+\theta_{C}-3(-1.5 \psi)\right)-1600$
$=290,000 \theta_{B}+145,000 \theta_{C}+652,500 \psi-1600$
$M_{C B}=2 E\left(\frac{600}{20(12)}\right)\left(2 \theta_{C}+\theta_{B}-3(-1.5 \psi)\right)+1600$
$=290,000 \theta_{C}+145,000 \theta_{B}+652,500 \psi-1600$
$M_{C D}=2 E\left(\frac{600}{20(12)}\right)\left(2 \theta_{C}+0-3 \psi\right)+0$

$$
=232,000 \theta_{C}-348,000 \psi
$$

$M_{D C}=2 E\left(\frac{600}{25(12)}\right)\left(0+\theta_{C}-3 \psi\right)+0$

$$
=116,000 \theta_{C}-348,000 \psi
$$

Moment equilibrium at B and C :

$$
\begin{align*}
& M_{B A}+M_{B C}=0 \\
& 522,000 \theta_{B}+145,000 \theta_{C}+304,500 \psi=1600 \tag{1}\\
& M_{C B}+M_{C D}=0 \\
& 145,000 \theta_{B}+522,000 \theta_{C}+304,500 \psi=-1600 \tag{2}
\end{align*}
$$

11-23. Continued

using the FBD of the frame,

$$
\begin{aligned}
& C+\sum M_{0}=0 ; \\
& M_{A B}+M_{D C}-\left(\frac{M_{B A}+M_{A B}}{25(12)}\right)(41.667)(12) \\
& \\
& \quad-\left(\frac{M_{D C}+M_{C D}}{25(12)}\right)(41.667)(12)-6(13.333)(12)=0 \\
& \\
& \quad-0.667 M_{A B}-0.667 M_{D C}-1.667 M_{B A}-1.667 M_{C D}-960=0 \\
& \\
& \\
& 464,000 \theta_{B}+464,000 \theta_{C}-1,624,000 \psi=-960
\end{aligned}
$$

Solving Eqs. (1), (2) and (3),
$\theta_{B}=0.004030 \mathrm{rad}$
$\theta_{C}=-0.004458 \mathrm{rad}$
$\psi=0.0004687 \mathrm{in}$.
$M_{A B}=25.4 \mathrm{k} \cdot \mathrm{ft}$
$M_{B A}=64.3 \mathrm{k} \cdot \mathrm{ft}$
$M_{B C}=-64.3 \mathrm{k} \cdot \mathrm{ft}$
$M_{C B}=99.8 \mathrm{k} \cdot \mathrm{ft}$
$M_{C D}=-99.8 \mathrm{k} \cdot \mathrm{ft}$
$M_{D C}=-56.7 \mathrm{k} \cdot \mathrm{ft}$
Ans.

Ans.

*11-24. Wind loads are transmitted to the frame at joint E. If A, B, E, D, and F are all pin connected and C is fixed connected, determine the moments at joint C and draw the bending moment diagrams for the girder $B C E . E I$ is constant.
$\psi_{B C}=\psi_{C E}=0$
$\psi_{A B}=\psi_{C D}=\psi_{C F}=\psi$
Applying Eq. 11-10,
$M_{C B}=\frac{3 E I}{6}\left(\theta_{C}-0\right)+0$
$M_{C E}=\frac{3 E I}{4}\left(\theta_{C}-0\right)+0$
$M_{C D}=\frac{3 E I}{8}\left(\theta_{C}-\psi\right)+0$
Moment equilibrium at C :

$$
\begin{align*}
& M_{C B}+M_{C E}+M_{C D}=0 \\
& \frac{3 E I}{6}\left(\theta_{C}\right)+\frac{3 E I}{4}\left(\theta_{C}\right)+\frac{3 E I}{8}\left(\theta_{C}-\psi\right)=0 \\
& \psi=4.333 \theta_{C} \tag{2}
\end{align*}
$$

From FBDs of members $A B$ and $E F$:
C $+\sum M_{B}=0 ; \quad V_{A}=0$
$\circlearrowright+\sum M_{E}=0 ; \quad V_{F}=0$
Since $A B$ and $F E$ are two-force members, then for the entire frame:

$$
\xrightarrow{+} \sum F_{E}=0 ; \quad V_{D}-12=0 ; \quad V_{D}=12 \mathrm{kN}
$$

From FBD of member $C D$:

$$
\begin{aligned}
\circlearrowright+\sum M_{C}=0 ; & M_{C D}-12(8)=0 \\
& M_{C D}=96 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

From Eq. (1),

$$
\begin{aligned}
& 96=\frac{3}{8} E I\left(\theta_{C}-4.333 \theta_{C}\right) \\
& \theta_{C}=\frac{-76.8}{E I}
\end{aligned}
$$

From Eq. (2),

$$
\psi=\frac{-332.8}{E I}
$$

Ans.

Thus,

$$
\begin{aligned}
& M_{C B}=-38.4 \mathrm{kN} \cdot \mathrm{in} \\
& M_{C E}=-57.6 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Ans.
Ans.

